
. ...- .
..’

optimization of l’article-in-Cell Codes on RISC l’roccwors

Vlktor K. I)myk

]’hysics Dcpartmmt, UCLA
1.0S hfy?ks, CA 90024

and
Jet Propulsion Laboratory/California Institute of Technology

Pasadena, California 91109
email: decyk@~)l~ysics.~~cla.ed~~

Steve l<oy Karnmsin

California lnstiiutc of Technology

Pasadena, California 91109
email: ssr@ccsf .calt ech.edu

Aeint de Boer

office of Academic (imputing, UCLA
LOS Angeles, CA 9(X)24

e-mail: cusgadbflmvs.oac .ucla.edu

]’aulctt <;. 1 ,icwer

Jet Propulsion l,aboratory/California institute of “Ikchnology
Pasadena, California 91109

e-mail: pauly@spacqJort. jpl. nasa.gov

Abstract

General strategies arc developed to optimize particle-cell-codes written in
];orlran for]<]= processors which are commonly used on massively para]]d
computers. ‘Ilese strategies include data reorganization to improve cache
utili~tation and code reorgani~.ation to improve efficiency of arithmetic pipelines.
l<esults show performance improvements of 1.4 to 3.4 timm can be achieved.

1. ln(roctuction

. .
,.

The recent development of massively paral]el processors (MI’]%) has offered the
promise of great performance, with peak slmds of 30-40 G1~lops not unusual. A
number of I li.gh Performance C.omputinc and C.ol~~ll~llllicatiolls (1 I]’CC) projects
have been funded in recent years to exploit this new technology for scicmtifie
calculations. SoXne of the authors have been involvdd<in one of these, the
Numerical Tokamak Project (NTI’), funded by the lJ. S. IJc’pt. of J:nergy, to IIIOdCl
fusion energy devices [1]. One of the important models in this project makes use of
]’article-in-Cell (PIC) plasma simulation [2]. PIC codes follow the trajectories of
many particles responding to electromagnetic fields that the particles themselves
produce. some of the authors have also been involved in developing I’IC codes for
other applications, such as an Air l~orcc funded project to model microwave devices.

These codes are challenging to parallelize because they involve two different data
structures, particles and fields, that must constantly communicate with one another.
Nevertheless, algorithms which effectively parallelize PIC codes have been written
[3-4] and thc!y have achieved very good parallel efficiency (typically, 90-%%),
meaning that the computation is well distributed on the parallel processors and
there is a lot of computation for each unit of communication. Part of this
“cfficimcy” comes from the fact that these codes achieve only a small fraction
(generally k= than 10%) of the peak speed of the RISC processors commonly used
on each node. This is because “efficiency” depends cm keeping the ratio of
calculation time to communication time large, and this ratio is enhanced by slow
codes!

In order to achieve the goals of the N1’1: it was felt that more attention needed to
be paid to sing]e node optimization of these parallel I’IC codes. This paper reports
the strategies we have found useful in improving performance and the results
achieved. (>f course, since RISC processors are commonly used on workstations, any
improvements we can make would also be useful there. l;urthermore, since many
of the optimization strategies are quite general, they may also be useful in other
types of calculations. We measure here only the single node performance of
algorithms. The issues involved with parallelixation are described elsewhere [3-4].

In this paper we investigate ten different strategies for optimization of IJortran
code on the RI.SC processors of the Intel Paragon, Gay T311, and IBM S1’2. By
combining the various strategies, we were able to achieve overall improvements in
1’IC code performance of 1.4 to 3.4 times, depending on the processor. Ihe strategies
involved changes to the IJortran code only; no assembly language code was used.

11. RISC l’roccssors

RISC (Reduced instruction Set Computer) processors have quite differen(
strengths and weaknesses compared to the high performance vector architectures
many in the scientific community are familiar with. We describe here some of the
key attributes of RISC processors and how they impact code desiSn ant{ optimization
strategies.

2

One way the RILSC processors achieve high performance is through the use of
pipe]ined aril}lmelic. This means that a multiply operation, for example, is broken
down into a number of parts, and the processor can be working on different parts of
different multiplies at the same time. Although it may take some number of clock
periods to get the first multiply (typically < 8), once the pipeline is filled, one result
can be produced per clock subscqucm\ly. Of course, other operations can begin in
successive clock periods only as long as they do not uws as an input the result of an
operation in progress. The floating point units take their inputs and store their
results to registers, and there are usual] y between 16 and 64 of them, each able to
hold a single floating point number. When operating only on data in registers and
when there are no data dependencies among the operations, the RISC processors
considered here operate in the 75 to 266 MI: I ,01’s/Second range.

Vector processors work on the same prillcip]e, but they have special instructions
for performing many multiplies or adds at once, which then fill the pipelines. To
take advantage of vector architecture, the programmer must “vectorize” his code,
that is, write his or her code in such a way that the compiler can recognize when
such multiple (i.e., vector) instructions can be used. In RISC architecture, the
pipelines are filled by the compiler with whatever instructions it can fincl. This is
made somewhat easier by the fact that the pipelines on RISC processors are typically
much shorter than on vector processors.

lJseful computations cannot be done with only data in registers of course, so data
must be loaded and stored from memory, and it is here that another complex feature
of using RISC processors is found. To keep the cost of memory down, RISC
processors use large amounts of slow-but-cheap DRAM (Ilynamic Random Access
Memory) and smaller amounts of fast-but-expensive SRAM (Static Random Access
Memory). The SRAM serves as a cache, that is, a staging memory between the fast
CPU and the relatively slow main memory. 30 make the hardware fast the
algorithms used to decide what parts of memory to keep in cache are very simple.
The cache is composed of a number of cache “lines” of adjacent words (typically 4-
32). Although fetching one word from main memory to cache can be relative slow
(typically tens of clock periods), the adjacent words in memory are fetched to the
cache at the same time, and can then be loaded to registers directly from cache.
Aside from the number of clock cycles it takes for a given load or store to complete,
this staging is handled transparently by the l<ISC processor’s memory management
unit. This transparency allows the same executable to run correctly on machines
with different cache sizes and layouts.

Since the cache is generally small, different locations in main memory can be
mapped to the same location in cache memory. If two operands needed in rapid
succession in a calculation are mapped to the same cache location, performance wil
be degraded. Not only will the processor be forced to wait while those cache lines
are replaced, but reuse of the other elemc~~ts of the cache line will also be inhibited.
Although details depend on the procmso~, it is general] y the case that if memory
references are close together, it is less likely that they will occupy the same cache
location. In contrast, the memory in some vector processors such as the C90, is
organized so that the stride through memory is more important than location in

3

memory.
There are [WO main ways to achieve good performance cm RISC processors. Onc

way is based on effective use of cache. The other way is through the effective use of
pipclined arithmetic. In the remainder of tl~is paper WC will investigate how this
can be done for PIC codes by modifying the Fortran code.

111. Structure of 1’ar[iclc-in-Cell Cocles ~<

We will use a well bench-marked electrostatic I’IC code [4 1 as our protot ype
algorithm because it is conceptually simple while demonstrating the techniques
involved. The time step for an electrostatic l’IC code has three main parts: deposit,
field solve, and push. In the deposit step, charge is deposited from the particles to a
grid to find the charge distribution. Each particle deposits charge to several nearby
grid points and many particles deposit to each grid point. In the field solve step, a
Poisson equation is solved on the grid to find the electric field. In the push step, the
electric field is interpolated to the particles to find their acceleration. Hach particle
reads the electric field from several nearby jy-id points and each grid point is read by
many particles. These three main park are repeated for as many time steps as
desired. The deposit and push steps are characterized by having memory references
that are effectively random and change from one time step to the next, making these
steps challenging for computer memory systems that are optimized for regular
reference pat terns. I,et us go over each of these steps in more detail.

in one dimension with linear interpolation the deposit consists simply of
finding the two nearest gridpoints to the particle’s location and depositing charge
which is proportional to the separation from the grid point, as follows:

djmensjon q(nx)
n = 5ni_ (x)
cix’x– float(n)
q(n) = q(n) i qm~(l - cix)
q(n+l) = q(n+l) i qm*dx

where x, qm are the position and charge of the particle, nx is the number of grids,
and q is the charge density function. Note that an important part of this calculation
is an indirect memory reference based on n which is accumulating into the array q
(scatter operation). Each successive particle could reference the same or different
memory locations. The charge is accumulated into each location, so the order in
which the particles are treated is not important (we ignore roundoff errors).

A l’oisson’s equation is then solved to give the electric field H on the grid points:

v*u. =47rq

‘1’his is done using l~FTs. Since typically less than 5% of the CPU time is spent
solving for the field and lJI~It’s have bmn extensively studied, it will not bc discussed
further here.

4

3’Iw last step consists of accelerating the particles in the calculated cdeclric field to
their new positions, using Newton’s 1a w, l; = ma. 1’}w algorithm used hme is a
tin~e-centm-cd leap-frog scheme, which in one dimension consists of:

vx(t+ dt/2) = vx(t-dt/2) + qtm”f(t)
X(i+ dt) = X(t) + VX(t+ dt/2)*dt

~<
where vx is the par(ic]e velocity, dt is the time step, qtm = (q/n~)*dt is the chargc-to-
mass ratio times the time step, and f(t) = fx(x(t)) is the electric field at the particle’s
current position, which is found by interpolation from the field at the two nearest
grid points:

dimension fx(nx)
n =- int- (x)
dx = x - float(n)
f =- fx(n)i(l - dx) + fx(n+l)*dx

Note that an important part of this calculation is an indirect memory reference in
the array fx which is random (gather operation). Once again, successive particles can
reference the same or different locations in the array fx, and the order in which
particles are treated is unimportant.

in this paper we will bc: using quadratic interpolation, because it more closely
resemblm the algorithm used in the Numerical Tokamak l’rojmt. in one
dimension that means the interpolation involves the three grid points nearest the
particle position, as illustrated in the following charge deposit example:

n’ int(x+ .5)
dx , x - f] OZi~(n)
q(n-]) = q(n-]) + .5*qm* (.5 – dx) **2
q(n) = q(n) -1 qm* (.-/5 - dx*~2)
q(n+]) = q(n+l) + .5 Aqm A(.5 + dx)~*2

with a similar scheme for the acceleration.

IV. Test Case Description

The standard benchmark case uses a two dimensional grid of 64 x 128 cells, with
327, 680 particles, which gives about 40 particles per cell on average. llw particles
are initially sorted by position, but randomize as the run proceeds. All results are
calculated after the particles have become randomized, and were done with 64 bit
precision.

l“}~ree parallel computers will be used in the evaluation, the]ntel]’aragon, the
Gay “1311, and the IBM S1’2. These are the main rnacllincs of interest to the
Numerical ~’okamak l’rojcct. In addition, the particle acceleration on the Cray C90
was also measured to determine if optimization efforts on the RISC processors
degraded performance on the vector processors. (Charge deposit on the C90 was not

5

measured, since the algorithm being tested here does not vcclorize.) The compilers
used were if77 (version 5.0.1) on the l’ara~on, cft77 (version 6.2.0.9) on the T31~, xlf
(version 3.01) on the S1’2, and cft77 (version 6.0.4.9) on the C90. The compiler
options which consistently gave the best ~mrformancc was used. These were:

]ntel Paragon: if77 -04 -Mr8 -Mr8intrinsics -nx
Clay T31>: cf77 -01 ~c
IBM S1’2: xlf -03 -qarch==pwr2 -qautoctbl=dblpad4

l’eak single processor speeds for the machines are: 75 Mflops for the l’aragon, 150
Mflops for the T31J, 266 Mflops for the S1’2, and 950 Mflops for the C90. For the tests
done here, an IBM RS/6000 model 590 workstation was used, which is identical to
the so-called “wide node’; version of the S1’2 processor.

Case 1: Initial code

Appendix 1 shows the Fortran listing of the 2d charge deposit subroutine which
will be used as the starting point for optimization. It nlinimi7,es the number of
floating point operations and uses a data layout which represents current typical
practice for a. scalar processor. Specifically, the components of the particle
coordinates are kept in separate arrays, X, Y, VX, and VY. The subroutine assumes
periodic boundary conditions and has additional checks to ensure addresses are
properly wrapped around.There are 20 multiplies, 19 adds, 2 convert to integer and 2
convert from integer operations, 11 loads and 9 stores in this subroutine. Since
conversions to and from integers generally make use of the floating points units,
they will be counted as one l;l 01’ (floating point operation) each. Ignoring other
integer operations, there is a total of 43 IJl .OPS per particle for the charge deposit.

Appendix 2 shows a similar listing for the acceleration subroutine. The
components of the electric field are kept in separate arrays, FX and FY. An
additional kinetic energy calculation is included, which is used to check code
integrity. There are 40 multiplies, 34 adds, 2 convert to integer, 2 convert from
integer, and 4 floating point comparisons, as well as 22 loads and 4 stores in this
subroutine, which gives a total 1~1 ,01’ count of 82 per particle.

The benchmark results for the deposit are summarized in Table I, for the
acceleration in Table 11, and the total (acceleration plus deposit) are in Table 111. In
this table we will give the speed in Ml~l .O1’s/Second. In order to make a meaningful
comparison of optimization across processors, we will also give the per cent of peak
speed obtained. Note that for the initial case, one obtains about 9% of peak speed for
the l’aragon and T31J, and 21% for the S1’2. We are also getting about 23?10 of peak
for the acceleration on the C90.

V. General Optimization Strategies

In this section we will test various strategies which improve effective use of
cache and arithmetic pipelines. In the following sections, we will introduce one

6

change at a time. Unless otherwise noted, the changes will be cumulative, that is,
wl]en we discuss changes for Case 4, it will also implicitly include the changes
already made in Cases 3 and 2.

Case 2: Storing particle components together

l’he first thing we can try is to reduce the distanced memory references in the
particle array. If the particle coordinates arc stored in separate arrays, then four cache
lines must be brought into memory to fetch t}~em. Storing them together in a two
dimensional array I’Al<’l; as follows:

I’ART(l, j) = X(j)
}’ART(2, j) =- Y(j)
}’ARr1’(3, j) =- VX (j)
1’ART(4, j) ‘- VY (j)

mean.s that al 1 four coordinates are likely to reside in one cache line (depending on
alignment) and thus may be brought into the cache together. This change does not
require any additional memory usage, just reorganization.

The results of this change (shown in Iables 1-111) indicate that the acceleration
improves on all the RISC processors and degrades slightly on the C90. The deposit
degrades slightly on the S1’2 and l’aragon, and improves slightly on the T3D. The
probable reason for the deposit degrading is that the VX and VY coordinates are
brought into cache but are not used in the deposit subroutine. The C90 degrades
because t}~e original data layout for the particles had an optimum stride 1 when
vectoriz,ed, but not in the new layout. Overall, performance improved il\ the range
of 5-20%.

Case 3: Stori~\g particle and field components together

The next thing we can try is to reduce the distance of memory refercmces in the
field array, by rearranging the field data as follows:

F’XY(l, j,k) = F’X(j, k)
F’XY(’2, j,k) = FY(j, k)

where (j,k) refers to the grid in two dimensions. This change also does not require
any additional memory usage. One finds that the acceleration improves on all the
RISC]Irocessors and is unchanged in the C90. I’his change does not effect the
deposit. Overall, performance improved from Case 2 by an additional 5-18%.

Case 4: Removing IF statements by index arrays

The pipeline architecture of the RISC processors can make 11: statements
relatively expensive, since it could potentially inhibit the filling of arithmetic
pipelines. So the next thing to try is to remove 1 F statements which occur when

7

ensuring addresses are properly wrapped around. Onc way this can be done is by
storing a precalculated array of indices , for example:

dimension np(nx)
rip(j) = j+]
if (j. eq. nx) rip(j) = 1

~c
and then introduce another layer of indirection, for example in the charge deposit;

n = ini- (x)
q(nP (n)) = q(np (n)) + qm*dx

~’his is often done in vectm-izing code on the Cray. I lowcwcr, it introduces another
array which must fetched and competes for space in the cache. This change requires
small additional memory usage. The results of this change indicate that timings
improve from Case 3 by 5-10% on all prcwessors except for the Paragon.

Case 5: Removing II; statements by using guard cells

Alternatively, onc could use extra guard cells to allow access to data beyond the
boundaries, and then add them up or replicate them outside the particle
subroutines. For example, with linear interpolation, the force arrays are replicated
before the push by enlarging the field array to include one extra guard cell on the
right in each dimension, as follows:

dimension fxy(?., nx+l, ny+l)
fxy(l, j,k) = fx(j, k)
fxy(l, nx+l, k) = fx(l, k)
fxy(l, jrny+l) = fx(j,l)

and similarly for fy(j,k). “1’he charge density is combined after the deposit as follows:

dimension q(nx+~ ,nyfll)
c](l, k) = q(l, k) + q(nx+l, k)
q(j, l) =- q(j{l) ~ q(j, ny+l)

Such use of guard cells is also used in the parallel version of this code to avoid off-
proccssor memory reference.

With quadratic interpolation, one neecls to enlarge the field arrays to include 3
guard cells, one on the left and two on the right in each dimension. l;or example
one can store the x component of the field array as follows:

dimension fxy(2, nx+3, ny+3)
fxy(l, j+l, k+l) = fx(j, k)
fxy(l, l,k+l) = fx(nx, k)
fxy(l, nx+2, k+l) z fx(l, k)
fxy(l, nx+3, k+l) = fx(?, k)

8

fxy(l, j+l, l) = fx(j, ny)
fxy(], j+l, nyi?) = fx(j, l)
fxy(l, j-t3, rly+3) = fx(j, ~)

and similarly for fy and q.
These changes do require some additional memory usage. l:urthcrnmrel it may

require modification to the field solver (or the use oftt~~porarics) to handle the
modified data structure. The result of adding this change to the previous changes
(instead of using index arrays) indicate that this method of removing IF StatCInCIltS
is faster on all processors than the use of index arrays. Therefore index arrays will
no longer be considered. Overall, timings improve compared to Case 3 by 18-45Y0.
except on the I’aragon.

Incorporating all the changes represented by Case 5 (storing particle and field
components together, removing 110s with guard cells) now gives speeds that are 10%
of peak on the Paragon, 19’ZO of peak on the T31], and 27% of peak on the S1’2. In
addition, we are getting 3870 of peak for the acceleration on the C90. Compared to
the original version, one finds that the total execution speed on the T31~ more than
doubles, improves about 30% on the S1’2, and 14% on Paragon. Furthermore,
acceleration on the C90 has improved 65cfi.

VI. Processor Specific Optimization Strategies

The strategies we have used until now have been general ones, which work in
almost all cases. l~owever, at this point, it was no longer obvious to us how to
obtain even betlcr performance. WC! decided, therefore, to examine the behavior of
individual processors in more detail by studying the assembly output of each
compiler. By comparing this with what wc knew of each processor’s architecture,
we could then attempt to determine what bottlenecks existed and what changes
could be made to the l~ortran to improve performance. The following sections,
therefore discuss each processor individually, although we are still interested in
discovering general strategies, if possible.

We will starl the investigations using Case 5 as a baseline, but with one
additional modification. Specifically, we changed the interpolation so that the
adjacent field elements were accessed in nwmory in a monotonically increasing
order, and the weights were calculated in the order they were used in the
interpolation. By itself, this additional modification to Case 5 made no noticeable
difference in performance. 1 lowevcr, when used in conjunction with
additional changes discussed below, the modifications were beneficial.

A. Intel Paragon

The Intel Paragon uses the Intel 80860/X1’ (i860) processor with a 50
[5]. It has one fixed point unit, and two floating point units (one adder

the

Ml IZ clock
and one

multiplier). in double precision, it can produci ~ne add every clock and one
multiply every two clocks, for a maximum performance of 75 M}dops. integer

9

arithmetic and floating loads/stores can occur simultaneously with floating point
arithn~ctic. I:loating point adds take 3 clocks to complele and multiplies take 6
clocks. 3’hm-e are 32 integer registers and 32 single precision floating point registers
which can be configured as 16 double precision registers. There is no hardware
divide or square root, although there are i~lstructions for 7-bit accurate divides and
reciprocal square roots. ~’he cache is four-way set-associative, 16 KB in size with 32
byte cache lines. ~<

There arc both pipelined and non-pipclined versions of the add, multiply and
load instructions. The pipelined loads, however, go directly from memory to
register and bypass the cache.

We have already noted that the perfor~nance of the l’aragon improved very little
in response to the changes we have made. The reason turned out that the compiler
did not use any of the pipelined instructions available to it. Since no overlapping
and pipelining was used, the performance is dominated mainly by the number of
operations, which has remained the same. The inhibition to the use of pipelining
seems to be the indirect addressing used in these subroutines.

Other features were noted. Since multiples take twice as long as adds, peak speed
can only be achieved when there are twice as many acids as multiplies. This is not
the case here (and probably is rarely true). In double precision, there are only 16
floating point registers available, so that the compiler is forced to keep many
temporaries in memory. These are architectural features one cannot do much
about, but they degrade performance.

Case 6: Using one dimensional addressing

1[was also noted that in the i860 processor, the integer and floating point registers
are connected and conversions between integer and floating point are done quite
efficiently. 1 Iowever, two dimensional addressing is quite inefficient. Therefore one
possible improvement is to do explicit one dimensional addressing. That is, instead
of using an array dimensioned q(nxv,nyv) and referring to element q(i,j), use the
array dimensioned q(nxv%nyv), and refer to the element q(nxvx(]-l)+ i). When tIliS
change is made, one finds the code improves compared to Case 5 by 10% on t}~e
l’aragon, but degrades 3-5% on the other processors.

B. Gay T31]

The Cra y T311 uses the HV4 l~lK Alpha processor with a 150 MI Iz clock [6-8]. It
has one fixed point and one floating point unit, and can produce one integer add
and one floating point calculation (add or multiply) per clock for a maximum
performance on 150 M1~lops. integer arithmetic and floating loads/stores can occur
simultaneously with floating point arithmetic. lntcger adds and loads from cache
take 3 clocks to complete, while floating point add and multiply pipelines have a 6
cycle delay. integer multiplies take 23 clocks to complete. There are 32 integer and
32 floating point registers. There is a hardware divide which is not pipelined and
takes 61 clocks to complete. The cache is direct mapped, 8 KB in size, with 32 byte

10

cache lines. It takes 22. clocks to load a cache line from memory with a page hit (12
clocks if the data already resides in a read ahead buffer).

Case 7: Integer conversion precalculation

LJpon examining the assembler output from the T311 compiler, one feature that
was evident was that conversions between floating pdl~ and integer data types was
relatively time consuming, and the calculation was stalled waiting for these to be
done. This conversion not only involved use of the floating point units to truncate
and normalin, but there was no direct communication between integer and floating
point regis{ms, so that additional loads and store were required. Thus we decided to
precalculate the conversions, that is, on entry to the loop, the nearest gridpoint and
deviation was found for particle j+l, and result saved for the next iteration, while
the rest of the calculation worked on particle j. The results showed improvement
from Case 5 by 7 and 20% on the T3D and the S1’2, respectively, but had no effect on
the l’aragon. This change was disastrous ‘thb the C90, however, since the vector
compiler could no longer vectorize t}~e lciop.

Case 8: Unrolling deposit loop

IN examining the performance of the T3D, one notes that the acceleration is
substantially more efficient than the deposit. Since the deposit has relatively less
calculation and the IJI;C. Alpha processor has relatively deep floating point pipelines
(6 cycles) compared to the other processors, it was hypothesized that there was not
enough calculation exposed to the compiler. Therefore we modified the code to
deposit the charge of two particles simultaneously, where we calculate the address
and weight of one particle while depositing the other and then reversing the roles.
This can be considered as an extension of Case 7. The result showed that compared
to Case 7, this improved the performance of the deposit on the Clay T31) by 12%, but
made things worse on the other processors.

C. IBM S1’2

The IBM S1’2 uses the PC)WER2 processor that is found on the RS/6000 model
590 workstation with a 66.5 MI IZ clock [9-11]. This processor is an “aggressive
supersca]ar” design that has parallel processing elements and can produce multiple
results per clock. It has two floating point units, each of which can produce one
multiply and add combination per clock, for a maximum performance of 4 l:lops per
clock, or a total of 266 Mflops. In addition, the processor has two fixed point units
which independently perform integer arithmetic and addressing. The processor is
capable of performing LIp to 4 loads and stores in parallel with computation in a
clock periocl. The floating point multiply and add pipelines have a 2-3 cycle delay.
Integer multiplies have a 2 cycle delay. There are 32 integer and 32 floating point
registers. There is a hardware divide and square root, which take 19 and 27 cycles to
complete, respectively. The cache is four-way set-associative, 256 KH in si~,e with 256

11

byte cache lines. It takes 21-27 clocks to fill a cache line from memory.

Case 9: 1 d addressing and separation of loads and stores

It was previously noted that precalculating the integer conversions (Case 7) also
improved performance on the S1’2, so we will start with that, In addition, using one
dimensional addressing (as in Case 6) turned out to improve performance when
used in conjunction with integer conversion precalculation. (This was somewhat
surprising since one dimensional addressing without integer preconversion (Case 5)
was worse on t}le S1’2.)

The charge deposit subroutine (Appendix 1) deposits charge on the nine nearest
grid points to the particle’s location. In examining the compiler output, it was
noted that each one of the nine deposits was completed before the next was done.
This was because the compiler could not be certain that some of the nine deposits
would go to the same memory location, so it generates safe code, although the
algorithm is designed so {hat this never happens (especially when guard cells are
used), ’10 help the compiler recognize that the loads and stores can be overlapped,
we loaded all nine deposits into temporaries, then deposited them. The result of
both of t}wse changes show that compared to Case 7, performance improved by 13%
cm the S1’2 and did not change much on the other processors.

In examining all these processor specific cases, we come to the conclusion that
Case 9 gives the best overall results so far. To surnmariz.e, Case 9 consists of the
following additions to the modified baseline Case 5: integer conversion
precalculation, 1 dimensional addressing and separation of loads and store in the
depc)sit, This case gives the best result on the S1’2 (37% of peak), and the second best
on the T31) (21 YO of peak) and l’aragon (1 O% of peak). I lowever, this version should
be not used on the Cray C90 because it fails to vcctoriz.e. The code listing for the
deposit for this case is shown in Appendix 3. The acceleration is quite similar.

VII. l’article Sorting

One important feature we have not concentrated on is cache reuse. in a I’IC code
maximum cache reuse occurs when all the particles in the same cell are processed
together. It turns out’@jthis was the way the code was initialized. Thus by
measuring the degradation of performance as the particle randomiz~, one can
estimate the importance of cache reuse in this case. The results for Case 9, show that
the difference in performance between sorted particles and randomized particles is
about 1.24 on the Paragon, 1.71 on the 1’31> and 1.0 on the S1’2. The T31J results as a
function of time are shown in l;igure 1 for illustration. ~’hese results reflect the si7Je
of cache: for the test problcm wc are considering, one field array is 8 times bigger
than the cache size on the 1’311, whereas it is one fourth the cache siz,e on the SE?.

ThLIS if particles were kept sorted, one could expect a further spccdup of 24% on
the Paragon, 70% cm the T311, and no improvement on the S1’2. Interestingly
enough, kcwpjng particles sorted degrades performance about 46% on the C90 (for
Case 5). l’his is because processing particles at the same grid point causes bank

12

conflicts in memory access on that machine.
Onc side effect of sorting is that initial particle identities are lost. l:or example, if

one had initial i~.cd the first 100 particles in a special way, one no longer knows
where they are in the particle array after sorting, unless one keeps track of their
original location in a separate array.

Case 10: Simple bin sort with Case 9 ~<

Since particles do not have to be exac{ly sorted to obtain benefits of cache reuse,
one approach is to sort them only once in a while, and keep them only
approximately sorted. A simple bin sorting routine was written which calculates
how many particle .ihme are at each grid point and their locations in the particle
array. The particle data is then copied in grid order using the location array and
another temporary array. This sorting was used in conjunction with Case 9.

The time to sort was approximately the same as the time to advance the particles
one time step, and it was determined empirically that sorting every 25 time steps
was optimum, Thus sorting incurred a 4 % overhead. It turned oL]t that sorting in
both x and y was unnecessary; sorting in y alone gave slightly better performance.

The results in Table 111, Case 10, are time averages over the entire run and
inc]ude the overhead of sorting. The T311 improved to 32% of peak (48 Ml;lops),
and the Paragon to 12% of peak (9 M l~lops). The S1’2 degraded slightly. ‘1’he T311
results as a function of time arc also illustrated in Figure 2. A more efficient sorting
routine would give only slight additional improvements.

Versions of the code were also constructed using linked lists to deposit charge
from all the particles into a given cell at once while leaving the particles in place in
their array. l’his was not found to be competitive whcm the cost of constructing and
maintaining the linked list was included.

VIII. Conclusions

We have found that optimization strategies for RISC processors fall into two
main categories, relating to effective usc of cache and arithmetic pipelinm. in Cases
2 and 3, cache use was improved by avoiding large strides in memory and by using
data stored in contiguous memory locations as much as possible. In Case 10, cache
reuse was improved by occasional sortil~g of particles. More effective use of
arithmetic pipelines was achieved by removing IF statements, reordering the
calculation, precalculating integer convwsions, making use of one dimensional
addressing, and separation of loads and stores in the charge deposit.

There was no magic bullet. llach of tlwse changes improved performance by
small amounts, but when aggregated, substantial improvement was ac}~ieved. The
best version for RISC processors was Case 10. Compared to the initial version, this
case improves performance by 343cfi, on the “1’311, by i’8Y0 on the S1’2, and by 3870 on
the Paragon.

13

Acknowledgments

Access to the Intel Paragon at the Jet Propulsion Laboratory, Pasadena, California,
was provided by NASAS Office of Aeronautics. We wish to acknowledge assistance
from Edith Huang from JPL.

Access tc) the IBM RS/6000 Model 590 was provided by the Office of Academic
Computing, UCLA, and we wish to acknowledge assistance provided by Paul
I+offman.

Access to the Cray C90 and T3D was provided by the National Energy Research
Supercomputer Center, in Livermore, California.

The research by V.K.D. was carried out in part at UCLA and was sponsored by
USDOE and NSF. It was also carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration. The research of P.C.L. and S.R.K. was supported by AFOSR
(Contract #F49620-94-l -0336), NSF (Cooperative Agreement CCR-91 20008), and
lJSDOE.

14

References:

[1] J. M. IIawscm, V. 1]ecyk, R. Sydora, and 1? 1.iewer, “1 Iigll-1’erforlllallce Computing
and Plasma Physics,” Physics Today, vol. 46, no. 3, p. 64 (1993).

[2] C, K. Birdsall and A. B. I,angdon, Plasma Physics via Computer Simulation
[McGraw-I lill, New York, 1981]. *C

[3] 1’. C. l.iewer and V. K. Decyk, “A General Concurrent Algorithm for Plasma
l’article-in-Cell Codes,” J. Computational l’hys. 85, 30? (1989).

[4] V. K. Ilecyk, “Skeletcm I’IC Codes for l%ralle] Computers,” Computer Physics
Communications, 87,87 (1995).

[5] i860 64-ljit Microprocessor l%ogramme~’s Reference Manual, Intel Corporation,
Santa Clara, California, 1990.

[6] Alpha Arc}~itccture 1 Iandbook, Digital I}quipment Corporation, 1992.

[7] Jeff Brooks, “Single l’E Optimization ‘Ikchniqucs for the CRAY 1’311 System”, Cray
Research Corporation, 1995.

(8] Alice H. Koniges and Kevin R. I,ind, “Optin~iz.ation Techniques and Early Results
for T3D Performance on industrial and Academic Applications,” Computers in
I’hysics ~ 399 (1995).

[9] S. W. White and S. IIhawan, “1’0W11R2: Next generation of the RISC
Systen~/600() family,” IBM J. Res. Develop. ~~, 493 (1994).

[10] R. C. Agarwal, l:. G. Gustafson, and M. Zubair, “l; xploiting functional parallelism
of I-’C)WIH<2 to dmig~~ l~ig}~-?>crforl~~al~cc’ numerical algorithm s,” 1 BM J. Res.
l)C’V(?]C)P. 3Q, 563(1 994).

[11] Optin~iz,ation and Tuning Guide for l:ortran, C and C++, IBM l’ublication SC09-
1705-00, 1993.

15

‘J’ab] c 1 : [)cposi L Ilenct]nlark i n Mf 1 ops (% of peak)

Case IIIM S}’2 Cray 2’31) lnt c1 I’aragon

1 initial
2 l>art_.iclc array
3 field array
4 index array
5 guard CC]]S

6 Id addressing
7 precaleulat ion
8 loo~l unrol 1 ing
9 best. case

6 4 (24?))
61 (23%)
61 (23%)
7 4 (28%)
83 (31%)
81 (30%)
8 8 (332)
6 1 (?32)

101 (38+))

34
15
16
16
?4
21
24
2-1
25

(9%)
(10%)
(~1~)
(16%)
(16%)
(14%)
(16%)
(18%)
(1-7%)

6.6 (9%)
6.4 (9%)
6.4 (9%)
6.0 (8’%)
6.4 (9%)
“/.3 (10%)
6.6 (9%)
6,3 (8%)
6.3 (88)

Table 11 : Accclerat_ion Benchmark in Mflops (% of peak)

case IBM SP’2 Cray T3D lnLe] Paragon Cray C90

1
2
3
4
5
6
-1
8
9

51
5-1
63
66
69
66
86
84
96

(19%)
(21%)
(24’%)
(25%)
(?6%)
(25%)
(3’?.%)
(32%)
(36%)

14 (9%)
18 (12%)
24 (16%)
?.5 (17%)
33 (22%)
31 (21%)
36 (24%)
36 (24%)
36 (242)

6.4 (9%)
7 . 0 (9%)
8 . 0 (11%)
7.3 (10%)
7.9 (11%)
8.6 (11%)
7.8 (10%)
7.8 (10%)
8.4 (11%)

2,15 (23%)
210 (’22%)
210 (22%)
29? (31%)
363 (38%)
358 (388)
46 (5%)
47 (5%)
42 (5%)

in Mf]ops (% of peak)

Cilsc’

1 ir]it. ial
2 particle array
3 field array
4 i Ildex array
5 guard cells
6 1 c~ addrcssi ng
-1 ~>reca]cu]at ion
8 loop unrolling
9 Ibcst case
10 sc>rt. ing

55 (21%)
59 (22%)
62 (23%)
68 (26%)
“13 (27%)
71 (2-/%)
87 (33%)
“/4 (28%)
98 (37%)
9-/ (36%)

Cray ‘1’31) lntcl I’aragon

34 (9%)
17 (11%)
20 (13%)
21 (14%)
29 (19%)
27 (18%)
31 (218)
32 (?12)
31 (21%)
48 (32%)

6.5 (9%)
6.8 (9%)
-/.4 (108)
6.8 (9%)
7.4 (10%)
8.1 (12%’)
7.4 (10%)
7.2 (lo%)
-/.5 (10%)
9 . 0 (1?:)

16

Appendix 1 :]nit ial deposit- suhroutinc

subroutine dpost. ? (x, y,q, cpl, l~op, nx, ny)
dimension x(nop) , y(nop) , q(nx, ny)
qmh = . 5*qnl
do 10 j = 1, nop

c f ind int. erpol at-ion wcigllt s
nn = x(j) + .5
dxl = x(j) - float (nn)
nn =- nn+l
jf (nn. gL. nx) nn ❑ nn - nx
amx = qrn’ (.75 - dxl’dxl)
n p = nn+]
jf (rip. gt. .nx) np = np – nx
dxp = qmh* (.5 + dxl) *’2
n]== nn-]
jf (nl. lt. .l) n] =- nl + nx
dxl =- qmh* (.5 - dxl)”?.
mm== y(j) + .5
dyl = y(j) - float (mm)
mnl==rnmil
if (mm. gL. ny) mm = mm - ny
amy = .75 – dyl*dyl
rnp :=rnm+]
j f (rep. gt. .ny) mp = rnp – ny
dyp == . 5* (.5 + dyl) ~’?
ml “ m rn- 1
if (nil.lt_.1) ml = ml + ny
dyl ‘- .5* (.5 - CIYI)**?

c dcpo.sj t, charge
q(nn, mm) = q (nn, mm) + arllx*amy
q (rip, mm) = q (rip, mm) + cixp’amy
q(nl, mm) =- q(nl, rnrn) + dxl’amy
q(nn, mp) = q (nn, rnp) + arnxjdyp
q(np, rnp) = q (rip, rnp) + cixpidyp
q(nl, mp) = q(n], mp) + dx]’dyp
q(nn, ml) = q(nn, ml) + amxidy]
q(np, ml) = q(np, ml) 4 dxp~dy]
q(nl, ml) = q(nl, ml) + cixlidyl

;1 O con~jnue
ret_urn
end

17

. .

.$.

Appendjx 2: lnit ja] push subroutine

subroutine push? (x, y,vx, vy, fx, fy, cILm, dt, ,ek, ncjp, nx, ny
1)
djmcnsion x(nop) , y(nop) , vx(nop) , vy(nop)
dimension fx(nx, ny) , fy(rlx, l~y)
Y.ero = o.
~nx z float, (nx)
any = float (ny)
sum] ‘ 0.
do 10 j = 1, nop

c find interpolation weights
nn = x(j) + .5
dx =- x(j) - float (nn)
nn = nn+l
if (nn. gt-. nx) nn =- nn
amx = . 75 - dx*dx
np=-nn+l
if (rip. gL. nx) np = np -- nx
dxp L .5’ (.5 + dx) **2
nl=nn-1
if (nl. lt_ .1) nl = n] + nx
dxl = .5* (.5 - dx) **2
mm =- y(j) + .5
dy = y(j) - float (mm)
mm =- mm + 1
if (mm. gt. ny) mm = mm - ny
amy = . 75 - dy’dy
mp=m m+]
if (rep. gt. ny) mp = mp - ny
dyp = . 5* (.5 + dy) ’*2
ml = mm - 1
if (ml. lt_ .1) ml = ml + IIy
dyl = .5* (.5 - dy)*~2

c find acceleration
dx ‘- amyi (amx*fx (nn, mm)+ dxp*fx(np, mm) +dxl *fx(nl ,mm))
1 4 dyp’ (amx*fx (nn, n~p)-{dxp* fx(r~p, n~~J)+cixl *fx(nl, n~p))
2+ dyl`(amx*fx (nn, ml)+dxp*fx (r)p, nll)idxl `fx(nl, n~l))
dy ‘ amy* (amx~fy(nn, mm)+ dxp’fy(np, mm) +dxl ‘f y(r)] ,mm))
]+ dyp’ (amx’fy (nn, mp)+dxp’fy (rip, mp)+dxl’fy(nl, mp))
2-I dyl*(t~mx* fy(nn, ml)+dx~J~f y(n~>, ml)+dxl *fy(nl, n~l))

c rlew velocity
dx = vx (j) + qt. m*dx
dy = vy (j) + qtm~dy

c avc~-age kinetic energy
sum~ = sum] + (dx + Vx(j)) A*? + (dy + vy(j)) **2
VX (~) L dx
Vy (]) = dy

c new posi Li on
dx = x(j) -t dx’dt.
dy = y(j) + ciy ’dt

c p[’] i odi c boundary conditions

18

. .

jf (dx. lt_.7cro) dx = dx + anx
jf (dx. ge. anx) dx = dx - anx
x(j) = dx
if (dy. lt. zero) dy = cly + any
jf (dy. gc. any) dy = dy - any
y(j) =- dy

10 contjnue
c normalize kinet-ic energy

ek = ck+. l’25*suml
return
end

19

Appenci.ix 3: F’inal deposit subroutine

,,

subroutine dpost. ? (part. ,q, qm, nop, idim~), nxv, rlxyv)
dimension part (idimp, no~)) , q(nxyv)

c begin first, particle
nnn = part (l,]) + .5
mmn = part_ (2,3) + .5
dxn = part. (1 , 1) - f lcjat. (nnn)
dyn = part. (2, 1) - float- (mnm)
qmh = .5 * qm

c find inter pc)lat.ion wc!ights
do 10 j ❑ 2, nop
nn ‘= nnn +]
mm “’ nxv*mmn
nnn = part(l, j) + .5
mmn = pzrr L(2, j) + .5
dxp = dxn
dyp = dyn
dxn = part (1, j) -- float (nrln)
dyn = part- (2, j) - float_ (mnm)
amx = qm* (.75 - dxp~dxp)
amy = . 75 -- dyp’dyp
ml == mm + nn
dxl == qmh’ (.5 - dxp) *’2
dxp = qmh’ (.5 + dxp) “2
mn = ml + nxv
dyl == .5* (.5 - dyp)”2
dyp = . 5’ (.5 + dyp)”?
rnp =- mn + nxv

c deposit charge
dx = q(mn) + dxl~arily
dy = q(mn+l) + amx*amy
amy = q(mn42) + dxp * a my
dxl = q(m)) i dxl’dyl
dyl =- q(ml +]) + amx*dyl
dyl = q(ml +2) + dxp’dy]
dxl = q(mp) + dxl Adyp
amx r. q (rep+ 1) + amxidyp
dyp = q (rep+ 2) + dxp*dyp
q(mrr) = dx
q(mn+l) = dy
q(mn+ ?.) = amy
q (ml) = dxl
q(ml+l) = dyl
q(ml +?) = dyl
q (rep) = dxl
q (rep+ 1) = amx
q(mp+2) = dyp

10 continue
c deposit charge for lasi- particle

nn = nnn i 1
mm’ nxvimmn

20

arllx = qm~ (.-/5 - dxnidxrl)
amy = .75 - dyn*dyn
ml z mm + nn
dxl = qmhi (.5 - dxn) i’?
dxp = qmh A(.5 4 dxn) ~’?
mn Z- m] + nxv
dyl z .5* (.5 - dyn) **2
dyp = .5* (.5 + dyn) i*?
mp ‘ mn + nxv

c deposit charge
q(mn) = q(nm) + dxl iamy
q(mn+l) = q(mn-1 1) + amx*al[ly
q(mn+?) = q(mn i?) + dxp’amy
q (ml) = q(ml) + dxl’dyl
q(mlil) = q(ml+l) + amxidyl
q(ml i?) == q(ml +2) + dxp~dyl
q(mp) = q(nlp) + dxlidyp
q(mp+l) = q (rep+ 1) i amx’dyp
q(mp+?) = q (rep+ 2) + dxpidy~)
ret_urn
end

21

@’!l Qf@E”” @l

.

I 1 t I I I I

,4
P.Lrwvv

A AAltf. R.NVU~lV \ /

, ,,..,1?’ 8

/ ,“ “ ‘4
J.

r ’
If

-.
,

IWA@@ ‘
,!

Vc-?i-- SL.1:> t Imt:

I

[1)

I I

L / uw-Lrx/vw

,-, , .,, ,,, ~./.,,,

I 1

l:igure 1

C1’L~ time in seconds for 327, 680 particles as a function of time step for acceleration
and deposit steps. Curve shows slowdown in C2)LJ time as particles become
rallciomiz,ed.

22

—— . . .

G@

I I I I I 1 I 1

J ‘-’l,.. ~,.,-~~,... -+ \ .,.. - .,

@ , b21_’-i @’@‘
[r’:lLJ -tXc{

CI’U time in seconds for 327, 680 particles as a function of
and deposit. steps. Curve shows slowdown in CPU time, is
particles every 25 time steps. \

/. ,,

time step for acceleration
prevented by resorting

23

